
On the reliance of COM Metrics for a C# Project
Harsh Bhasin#, Deepika Sharma*, Rashmi Popli^

#Assistant Professor, Department of Computer Science
FMIT, Jamia Hamdard, New Delhi, India

*M.Tech Scholar, Department of Information Technology
YMCAUST, Faridabad, India

^Assistant Professor, Department of Computer Engineering
YMCAUST, Faridabad, India

Abstract— Can you judge the love of a person? His affection?
His intentions? The answer is a big No!. However, the bank
balance, the assets and even the number of research papers
can be measured. Marty Rubin once said “Every line is the
perfect length if you don't measure it.” So, to every software
developer his software would be just perfect if there is no
metric to measure it. This premise compromises the reliability
of software. Therefore it becomes immensely important to be
able to measure software as well. In order to accomplish this
task, software metrics come to our rescue. The present work
analyzes various software metrics, puts them in right
perspective and suggests the model to prioritize the metrics so
that the software under development can be measured in a
comprehensive way with lesser effort. The experiment
conducted in order to prove the above premise has also been
discussed in the paper. The paper also throws some light on
the applicability of software metrics in C# projects.

Keywords— Software Metrics, Object Oriented, COM,
Reliability.

I. INTRODUCTION

Software metrics are gaining importance day by day.
They help us to enforce the same set of standards in
software projects as physical sciences. The interest in
software metrics dates back to the inception of the
discipline of software engineering itself. Generally, they are
perceived as an active measurement; however, some of the
researchers have also considered software metrics as the
major of degree to which a system, component or a process
possess a given attribute [1]. Researchers have defined
software metrics as per their importance to their respective
field.

Software metrics have been used in various areas like in
the determination of cost and size, in the prediction of
quality levels and to provide quantitative check etcetera [2].

Software metrics can be compared to one of the branches
of physics i.e. units and dimensions. As in the case of units,
a unit must be precisely defined, it should be comparable
and repeatable. For example, in order to define a second, we
cannot take a year as a standard and say a second is

 of a year, as it should be defined in second but
second cannot be defined in year. Moreover, this definition
of second would not be precise. So, in order to overcome
this problem, second has been defined in terms of the time
taken by an electron to go from one level of Cesium (Cs) to
another. 9192631770 such transitions constitute 1 second.

This definition is precise as measurements are done with
the help of optical interferometer [3], it is repeatable

because the laboratory of any city can measure 1 second
using the instruments and is comparable also. In the same
way we desire software metrics to be precise, comparable
and repeatable. This is what is expected from software
metrics as well.

This work examines the work of software metrics, puts
them in right perspective and proposes a novel model of
dealing with colossal number of metrics still, keeping the
integrity of the software intact. The main goals of this paper
are:

• To classify software metrics.
• To examine the importance of each metrics.
• To be able to present a model to prioritize metrics,

especially for a C# project.
Rest of the paper has been organized as follows. Section

two discusses the basics of software metrics, section 3
discusses the proposed model and the fourth section
concludes and discusses the future scope.

II. SOFTWARE METRICS

A. Design Metrics

The design generally includes use cases. In order to
measure an Object Oriented Software, the number of actors
and use cases are counted. As per the review the actors can
further be segregated as simple, in case of an interface;
complex, in case of an intricate interface or complex, in
case of a graphical interface [4]. According to some
researchers, the interactions in these diagrams are also
subject to segregation. The interactions can also be simple,
average or complex.

B. Web Metrics

A software developer must be able to measure the
application he is developing. In case of web applications the
following metrics come to our rescue.

• The number of static pages, in which the content

does not change as such
• The number of dynamic pages, in which the

content is updated from a database
• The number of links both internal links and the

external links
• Some of the web sites, which are heavy on content,

measure their size using number of words as well
• The other objects like videos, pictures, audio files

etcetera also help to find the size of a page [5].

Harsh Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4288-4291

www.ijcsit.com 4288

C. Process and Product Metrics

In software development process, what is being
developed is product and how it is developed is a process.
The efficiency of a product cannot be judged merely by
considering the product but the process also needs to be
considered in order to ascertain the efficiency of the system
developed. Process and Product metrics come to our rescue
in finding out the efficiency of the system by considering
both the product and the process. As per the literature
review, the process indicators take care of the status of the
project. These indicators also help us to track risks and
hence find out the problem area. Needless to say the whole
thing helps in developing a quality product.

If these process metrics can be known to the team only,
they are referred to as private process metrics. On the other
hand, public process metrics help an organization to make
strategic changes and to evaluate the performance of the
concerned team. This can be done by finding out the
number of errors and defects and identifying their
corresponding cost.

The project metrics, on the other hand, are needed to
avoid development schedule delays [6]. They are based on
the input, output and results. These factors can, in turn,
depend on the Lines of Code (LOC) and various other size
metrics. It may also be noted that in such cases the Function
Points (FP) and Object Oriented Metrics, discussed in the
next sub-section, can also help us.

The goal of analyzing above two metrics should be, to
map the metrics with the quality of the system being
developed.

According to some authors, the product and the process
metrics can also be internal or external. Those relating to
the structure are external whereas those relating to the
behavior are internal. Figure 1 summarizes the discussion.

D. Object Oriented Metrics

Object Oriented Metrics are used for measuring Object
Oriented Software. This topic is widely researched and the
list of these metrics has been presented in Table 1.

TABLE I Object Oriented Metrics
Sr. No. Metric Description Ref. No.

1 Lines of Code (LOC) This metric counts the lines of source code 7

2 Cyclomatic Complexity
It measures the number of independent paths through a program's
source code.

8

3 Comment Percentage 9

4 Weighted Methods per Class (WMC) WMC is a count of sum of complexities of all methods in a class. 10

5 Response for a Class (RFC)
It is number of methods in the set of all methods that can be
invoked in response to a message sent to an object of a class.

10

6 Coupling Between Objects (CBO)
It is the measure of the average degree of connectivity and
interdependency between objects in a model.

10

7 Lack of Cohesion in Methods (LCOM)
LCOM is the number of different methods within a class with
reference to a given instance variable.

10

8 Number Of Children (NOC) It is defined as the number of immediate subclasses. 10

9 Depth of Inheritance Tree (DIT)
It is defined as the maximum length from the node to the root of the
tree and measured by the number of ancestral classes.

10

10 Method Hiding Factor (MHF)
This metric is the ratio of the total inherited methods and total
methods defined.

11

11 Attribute Hiding Factor (AHF)
This metric is the ratio of hidden (private and protected) attributes
to total attributes.

11

12 Method Inheritance Factor (MIH)
MIF is defined as the ratio of the sum of inherited methods in all
classes of the system under consideration to the total number of
available methods for all classes.

11

13 Attribute Inheritance Factor (AIF)
AIF is defined as the ratio of the sum of inherited attributes in all
classes of the system under consideration to the total number of
available attributes for all classes.

11

14 Coupling Factor (CF)
It is the ratio between the couplings and the maximum number of
possible couplings among all the classes.

11

15 Polymorphism Factor (PF)
It measures the degree of method overriding in the class inheritance
tree.

11

16 Data Abstraction Coupling (DAC)
DAC is the number of Abstract Data Types (ADTs) defined in a
class.

12

17 Message Passing Coupling (MPC) MPC is the number of send statements defined in a class. 12

18
Number of Methods Overridden by a
subclass (NMO)

It counts the number of redefined methods in the class. 13

19 Reuse Ratio (RR)
The Reuse ratio is given by ratio between numbers of super classes
by total number of classes.

13

20 Specialization ratio (SR)
The Specialization ratio is given as the ratio number of subclasses
by number of super classes.

13

21 Maintainability Index (MI)
Maintainability Index is a software metric which measures how
maintainable the source code is.

14

Harsh Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4288-4291

www.ijcsit.com 4289

Fig. 1 Process and Product Metrics

E. Metrics for a C# Project

The metrics for a project developed in C#, in Visual
Studio can be ascertained with the help of the many metrics.
However, as per Microsoft [14], the following metrics are
more important as compared to others.

1) Lines Of Code (LOC): The LOC indicates the
number of lines in a module. It may be stated here that, the
number of lines in case of a C# project is not same as the
LOC of a C program. In the former case LOC is counted for
a module whereas in the later case it is generally assessed
for a whole program. The metric has traditionally been
associated with the amount of work done and in the
maintenance of the module. So, ideally if the value of LOC
for a particular module is too high then it should be split
into maintainable parts.

2) Depth of Inheritance (DIT): As per the literature
review, this metric indicates extend to the root of the class
hierarchy [10]. The problem with high depth is the possible
intractability of the definition and the use of metrics.

3) Class Coupling: Coupling has been used as a
credible metric by most of the researchers working in the
discipline. However, as of now no credible study has
analyzed the relevance of the types of coupling in case of
Component Object Model (COM) projects developed in C#.

4) Cyclomatic Complexity: It generally refers to the
number of independent paths that a program may have. The
increase in the metric may indicate the increase in the test
cases and plausible problem in dealing with all the paths.

5) Maintainability Index: It estimates an indicator value
sandwiched between 0 and 100. This metric signifies the
ease of maintaining the code [14]. If the value of this
indicator is high it means better maintainability. Figure 2
shows the relationship between the value of the metric and
maintainability.

0-9:
Low

Maintainability

10-19:
Moderate

Maintainability

20-100:
Good

Maintainability

Fig. 2 Relation between Maintainability Index and
Maintainability

F. Problems with Software Metrics

Metrics are used for taking decision regarding effort,
testing and so on. However, the decision would be incorrect
if the basis itself is flawed. The metrics are crafted
considering data to be normally distributed [15] which may
not always be the case. Interestingly the data elements may
lie outside the realm of the domain itself, referred to as
outliers, also pose a big threat to the application of metrics.

It is also important to take care of the units of
measurements and scale of the data, before considering
them for problem which depends on various data samples.
The error may lead to incorrect designs and hence
irreparable damage.

III. EXPERIMENT

A. Hypothesis

For a professional C#, client side, application the same
amount of quality can be achieved using lesser metrics.

B. Methodology

In order to verify the above hypothesis professional
software developed in C# is taken. The software was
management software of about 3K LOC. Three cycles of
testing were carried out. The software was tested and the
average APFD came out to be 62%. The testing was done
using the 21 object oriented metrics, discussed earlier.

The number of metrics in the second phase was reduced
to 5 in accordance with the discussion in section 2.4. The
software again went to three cycles of testing. The test cases
were crafted again in accordance with the new set of
metrics. The APFD, in this case, came out to be 61.8, which
is almost same as that of earlier phase.

The above experiment confirms the hypothesis stated
earlier. The proposed technique is now being applied to
bigger software of around 8K LOC. The point to be noted is
that, as gains the common perception the measurement need
not be more rather they should be affective. Moreover,
many researchers stop at the maintainability part. This work
on the other hand explores the use of measurements in
testing as well. In one of our works the empirical relation
between the two has been established. The results of the
experiments being carried out are encouraging.

Harsh Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4288-4291

www.ijcsit.com 4290

IV. CONCLUSIONS

There is a golden rule: “something is better than nothing”.
The thing also holds for software metrics. As a software
developer, even if you are not aware of the intricacies of the
discipline of software metrics, you can at least start with the
basic metrics like lines of code. This paper makes an
attempt to introduce various metrics. Various software
metrics have been discussed and analyzed in the preceding
discussion. After understanding the concept it is important
to decide which combination must be used to make the
software as reliable as possible. However, it is important to
put the things in the right perspective, especially in relation
to the applications that the metrics might have in software
development. The applications of the concept entails cost
estimation, effort and many more things.

It may be noted that metrics give us a way forward to
automation of testing, which is the ultimate desire of any
developer. In one of our works effort has been made to
develop an automated test generator via cellular automata
[16]. In the extension of the work, test case generation was
done via artificial life [17]. Effort is being made to use the
concept of metrics in the automation process. Some of the
researchers have emphasized on the fact that the
productivity metrics, which tells us about developers and
testers, must not be confused with the productivity metrics,
which are concerned with the product.

The most important point is regarding the importance of
metrics. It may be noted the metrics as such do not wear out.
However, the importance attached to a metric may change
[18]. For example the NOC metric discussed earlier will not
hold the same importance in C#, as it does in C++. The
software development technique in C# is radically different
as compared to C++.

REFERENCES
[1] Y. Wang, Q. He, et. al.. 2002. Product and Process Metrics: A

Software Engineering Measurement Expert System. 4th
International Conference, PROFES 2002 Rovaniemi, Finland,
December 9–11, 2002 Proceedings, 337 - 350.

[2] T. Gilb. Software Metrics, Winthrop Publishers, Inc., Cambridge,
Massachusetts, 1977.

[3] Halliday & Resnick. Fundamentals of Physics, 3E, Wiley 1988.
[4] M. Sheppard. 1990 Design metrics: an empirical analysis. Sogtware

Engineering Journal, vol. 5, no. 1.
[5] B. Lilburne, B. Devkota, K. Khan. 2004. Measuring Quality Metrics

for Web Applications. Technical Report, IRMA International
Conference, New Orleans, USA.

[6] R. Pressman. (2000). Software Engineering: a ractitioner's
Approach: European Adaptation, 5th edition, McGraw-Hill, UK

[7] B. Londeix, Cost Estimation for Software Development, Addison
Wesley, Reading, Massachusetts, 1987.

[8] T.J. McCabe, "A Complexity Measure," IEEE Transactions on
Software Engineering, Vol. SE-2, No. 4, October 1976, pp. 243 -
245.

[9] D. Tegarden, S. Sheetz, and D. Monarchi. 1992. Effectiveness of
Traditional Software Metrics for Object-Oriented Systems.
Proceedings of the Twenty-Fifth Hawaii International Conference
on System sciences, 359-368.

[10] S. Chidamber, and C. Kemerer. (1994). A Metrics Suite for Object
Oriented Design, IEEE Transactions on Software Engineering, vol.
20, no. 6, pp. 476-493.

[11] R. Harrison, S. Counsell and R. Nithi, "An Evaluation of the
MOOD Set of Object-Oriented Software Metrics," IEEE Trans.
Software Eng., vol. 24, no. 6, pp. 491-496, June 1998.

[12] Li, W. and S. Henry, Object-oriented metrics that predict
maintainability. Journal of Systems and Software, vol. 23(2): p.
111-122, 1993.

[13] M. Lorenz and J. Kidd, Object-Oriented Software Metrics, Prentice
Hall, Englewood Cliffs, New Jersey, 1994.

[14] http://msdn.microsoft.com/en-us/library/bb385914.aspx
[15] J.M Bieman, N Fenton, D.A Gustafson, A Melton, L.M Ott,

Fundamental issues in software measurement, A Melton (Ed.),
Software Measurement, International Thompson Computer Press
(1995), pp. 39–52

[16] H. Bhasin, and N. Singla. 2013. Cellular-Genetic Test Data
Generation. ACM Sigsoft Software Engineering Notes, vol. 38, no.
5, 1-9.

[17] H. Bhasin., Shewani and D. Goyal. 2013. Article: Test Data
Generation using Artificial Life. International Journal of Computer
Applications, vol. 67 no.12, 34-39, Published by Foundation of
Computer Science, New York, USA.

[18] M.S. Feather and T. Menzies. 2002. Converging on the optimal
attainment of requirements. In IEEE Joint Conference On
Requirements Engineering ICRE’02 and RE’02, 9–13th September,
University of Essen, Germany.

Harsh Bhasin et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4288-4291

www.ijcsit.com 4291

